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In this paper we want to extend the results of pointwise analysis through 
wavelet transforms to the class of functions where the local fluctuation is 
bounded by any submultiplicative function. This generalizes the results obtained 
before in the well-known case of H61der regularity. 
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1. INTRODUCTION 

We may distinguish at least three aspects in fractals: (i) an underlying 
dynamical system, (ii) global self-similarity, and (iii) local self-similarity. 
Whereas for the first two points, we do not know yet how to use in general 
the wavelet technique as analysis tool, the third point is quite settled now. 
In particular we have strong theorems about  the analysis of local regularity 
through wavelet transforms. The oldest theorems in that directed used the 
order of magnitude of the gradient of the harmonic extension of a function 
over the real line to characterize global H61der regularity (e.g., ref. 1). 
Recently, using the wavelet transform, sufficient conditions on the wavelet 
side have been found to prove pointwise H61der regularity of functions and 
even pointwise differentiability. (2'3) All these theorems are of Tauberian 
nature, that is, they are optimal, but they do not give a complete charac- 
terization of pointwise regularity. 

In this paper we propose to extend the theorem of pointwise H61der 
regularity to a larger class of pointwise regularity, where the local fluctua- 
tions are bounded by some submultiplicative function. We will then apply 
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the wavelet technique to the Brownian motion, where we shall 
redemonstrate Levi's law and to the Weierstrass function for which we can 
easily prove its nondifferentiability. In a second part we shall introduce a 
more general concept of local self-similarity linked to the notion of local 
renormalization in wavelet space. 

2. WAVELET T R A N S F O R M S  

The wavelet transform has by now become a well-known tool in 
analysis (see, e.g., refs. 4-6 and 15). In the case of its application to fractals 
it has been shown that it works as a mathematical microscope t7-9~ that 
reveals the small-scale features of the analyzed function. We now start by 
recalling the properties of the wavelet transform that are necessary for this 
paper. For the presentation of the wavelet transform in an L 2 context we 
refer to ref. 10. 

The wavelet transform of s e L l ( ~ )  with respect to the analyzing 
wavelet g ~ L~(R) is defined as the following set of convolutions: 

~gs(b,a)= dt-~, s ( t )=(gh ,~ l s )=~ , ,*s (b )  
_~ a 

where we have introduced some notations that we shall systematically use 
in the sequel: 

~ ( t )=  ~(--  t), g t ( t ) = g ( - t ) ,  g,=g(./a)/a, gb, a=ga('--b)  

The wavelet transform thus maps functions over the real line R to functions 
over the half-plane H, which may be interpreted as a position-scale half- 
plane, and the wavelet transform thus is a sort of mathematical microscope. 

Although a single convolution may happen not to be invertible, the set 
of convolutions defining a wavelet transform always has an inverse: let 
h e L~(R) satisfy 

log(2 + It])h �9 g ~ L l (2.1a) 

f ~  d~o/~(o9) ~(co)= f ~  dco h ( - c o ) ~ ( - c o ) =  cg.h, 0 < ICe,hi < oo (2.16) 
a o  o)  a t )  f.o 

where the Fourier transform is defined as 

f 
+ o o  

~(tn) = dt e-i'~t g(t) 
o o  
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Such a function h is called a reconstruction wavelet for g. Suppose further 
that s e L~(R)  is weakly oscillating around 0 in the following sense: 

ft+~ , _ ~ s --* 0, ~ ~ oo uniformly in t (2.2) 

Then we have 2 

1 foda 
-c~hJ~ - ~ , . * h . * s ( t ) - - * s ( t ) ,  e~O,  p ~  (2.3) 

It can be shown (3) that under the hypothesis on g and h there is a function 
reLl ( • )  such that 

s~.,o = r * s( ./eJ/e- r * s( ./p)/p 

Thus for weakly oscillating s ~ L ~' the convergence holds pointwise in every 
point of continuity and IIs,,pll~. is uniformly bounded. If in addition s is 
uniformly continuous, then the convergence holds uniformly in L ~. Note 
that if s has only positive frequencies, then clearly only the positive- 
frequency part of (2.1) should hold. 

Other functional contexts are possible. Consider the functions in the 
class of Schwarz S(R) consisting of those functions that together with their 
derivatives decay faster than any polynomial. Let S+(R) be the subset of 
S(R) consisting of those functions whose Fourier transform is supported by 
the positive frequencies only. For s, g, h s S + ( R )  the inversion formula 
(2.3) converges in the topology of S(R) (e.g., ref. 11). Actually it is not 
necessary that h and g are both in S+(R). Essentially all that is really 
needed is ~ ,  h e S+(R). It can easily be shown that the wavelet transform 
of s ~ S+ (R) with respect to g s S+ (R) is very well localized over the half- 
plane. More precisely, it satisfies 

I~s(b,a) l<~O ( l + l b l ) " ' ( a + a - ' ) "  (2.4) 

for all m >0.  On the other side of duality let q eS ' (N)  be a tempered 
distribution. Let ~l/'gq(b, a)=~(~b . , )  be the wavelet transform of q with 
respect to g e  S , (N) .  This is a C ~ function over the half-plane bounded by 
some polynomial in a+ l/a and b, and the action of q on seS+(N)  may 

"- Note  that  for every a the integral  over  b is again a well-defined convolut ion.  
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be written as an absolutely convergent integral over the half-plane (e.g., 
ref. 11 ) 

f ',a f+" 
- -  db #-~,s(b, a )#"gq(b ,  a)  rl(s) = C~.h a . . . .  ~_ (2.5) 

Clearly the analog is true for S _ ,  the space of functions in S having only 
negative frequencies, as well as for So = S+ u S _ .  

F u n c t i o n s ,  M e a s u r e s ,  D i s t r i b u t i o n s .  Note  that  whenever one 
works with wavelets g e S + ( R )  the frontier between measures,  functions, 
and distributions is very little natural. Indeed the derivation opera tor  c~,: 
S ' + ( ~ ) ~ - - ~ S ' + ( R )  has a unique inverse in S '+( l~)- -a  space defined modulo  
the po lynomia l s - - and  we have 

~/ ' [  g, s-l(b, a) = a"[( i0 , )"  g, (ic~,)-" s-](b, a) (2.6) 

for all n ~ 7/. But now for every distribution with compact  support  there is 
some primitive that actually is a function (e.g., ref. 12). Therefore we may 
limit ourselves to functions without any loss of generality. 

3. T H E  O R D E R  OF M A G N I T U D E  OF W A V E L E T  C O E F F I C I E N T S  

As we have seen in the previous section, the rapid decrease of the 
Fourier  t ransform of the analyzed function at infinity and the rapid 
decrease of the wavelet at the zero frequency is mirrored in a rapid 
decrease of the wavelet coefficients at small scale. In terms of the time 
representation this means that a high global regularity of the analyzed 
functions and many  vanishing moment s  of the wavelet imply a rapid 
decrease of  the wavelet coefficients. This relation shall be clarified in this 
section. In particular, we shall show that a local regularity of s implies a 
local decrease of the wavelet coefficients. 

In order to measure the regularity of a function s in a point t o we 
estimate how well it can be approximated  locally by a polynomial  P,, of 
degree n. That  is, we suppose that we may write 

S(to + t) = P, , ( t )  + Sloe(t) (3.1) 

where the remainder becomes small compared  to the principal term P,,; 
that is Slo,(t)  = o ( t " )  as t -~ O, 

E x a m p l e  3,1.  If s is cont inuous in to we may write 
s ( t ) - = S ( t o ) + O ( 1 )  and thus P o ( t ) = S ( t o ) .  If s is differentiable at to, then 
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S ( t o + t ) = S ( t o ) + t s ' ( t o ) + O ( t ) ,  and therefore we may choose P l ( t ) =  
S(to) + ts'(to). 

In general the faster Sto~(t) goes to 0 together with t, the higher is the 
regularity of s at to. Therefore we introduce a hierarchy of functions with 
which we can compare the remainder Sto~. 

D e f i n i t i o n  3.2.  Let s be a function that satisfies (3.1) with some 
n ~ l  o. We say s is of regularity A" at to, n < ~ < n +  1, iff 

s l o r  ~) (t ~ O )  

We say s is of regularity 2 ", n ~< ct < n + I, if 

Slo~( t )=o( t  ~) (t ~ O )  

�9 .t~ ct~<n+ 1, f l > 0 ,  if We say s is of regularity A Jo~, n < 

Slo~(t) = O(t  ~ log p t) (t ~ 0) 

~.p We say is of regularity 2log, n < ct ~< n q- 1, fl > 0, if 

s=oc( t )=o( t ' logP t) ( t - * O )  

~,.p =.p We say s is in A~(R), 2=(R), Atog(l~), 2~og(~) if [s(t)l ~<c(1 + [tl =) and the 
respective local estimations hold uniformly in t o . 

We have the following scale of local regularities (~ < ~t', fl <f l ' ,  y > 0) 

A~o~ = A,~o~ ' = A= ~ 2~"P = 2~"P' = 2~ ,og A ,o~ =''~' 

The local regularity of the analyzed function implies a decrease of the 
wavelet transform at small scales whenever the analyzing wavelet is 
localized and has a sufficient number  of moments  vanishing. This decrease 
is of the same type as the decrease of s~oc, the difference of s and its local 
polynomial approximation P,,. 

T h e o r e m  3.3.  Let s be a polynomial bounded function 

Is(t)l ~ c(l + Itl ~) 

If s is of regularity A = at some to, then the wavelet transform ~ s  of s with 
respect to the wavelet g satisfies 

~ / ~ s ( z o + b , a ) = O ( a ~ + [ b [  ~) (b ,a- -*O)  
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If s is of regularity 2 ", then 

"l~S(To + b, a) = o(a ~ + Ibl ") ( b , a ~ O)  

In both cases the wavelet should satisfy g e L ~ (1~) and t'g E L ] (R). If s is of 
ct, fl  regularity A,og, then 

~tg'~s(%+b,a)=O(a'loga a+lbl ' logalb l )  ( b , a ~ O )  

If s is of regularity 2~og, then 

~gS(Zo + b, a) = o(a ~ log a a + Ibl = log a Ibl) (b,a--*O) 

In both cases, the wavelet should be localized such that gEL](~)  and 
t ' logatgeL~(R) .  In addition, in all four cases the first n moments  of g 
should vanish, 

f + ~ d t t ' g ( t ) = O  m = 0 , 1  ..... n for 
--0",9 

where n is the only integer that satisfies ~ ~< n < ct + 1. 

This theorem shows that, e.g., the local H61der regularity of degree ct 
is mirrored by a decrease of order a ~ along every straight line in the half- 
plane passing through the point to; that is, for fixed (b, a ) e  H we have 

~VgS(ro + 2a, 2b) = O(2 ") (2 --* 0) 

We will prove the theorem for an even larger class of local regularities. 

D e f i n i t i o n  3.4.  A nonnegative, nondecreasing function r over R + 
is called submultiplicative if there is a constant c > 0 such that 

r(tu) <~ cr(t) r(u) 

for all t, u e  ~+.  A function s over R is called submultiplicative if s(t) and 
s ( - t ) ,  t >i 0, are submultiplicative. 

Note that the submultiplicative precisely means that t~---~log(r(e')) is 
subadditive. 

We remark that for all regularity classes we have encountered so far, 
the local function s~oc may be majorized by a submultiplicative function. 
Since the wavelet is operating module polynomials, it only sees the local 
fluctuation s~oc, but not the polynomial part. 
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T h e o r e m  3.5.  Let r be a submultiplicative function and let s satisfy 

with 
satisfies 

some 

(i) 

Then 

(ii) 

s(t o + t) = P,(t) + O(r(Itl )), 

polynomial  P,, of degree n. Suppose the 

geLt(R) ,  r .geL ' (R) .  

f+codtg(t) t '=O,  m e { 0 ,  1 ..... n}. 
- c o  

~,UgS(to + b, a) = O(r(b) + r(a)) 

uniformly in H. If s satisfies in addit ion 

s(zo+t)=P,,(t)+o(r(Itl) ) (t-+O) 

then we have in addit ion 

~gS( t  o + b, a) -- O(r(b) + r(a)) 

( t e R )  

analyzing wavelet 

Proof. The argument  is well known in the A ~ case and may be 
merely translated to the general submultiplicative situation. Since under the 
conditions stated in the theorem the wavelet does not see the polynomial  
part,  the theorem follows from the next two lemmas. 

L e m m a  3.6.  Let s ( t ) = s ( - t )  be an even, submultiplicative func- 
tion. Then the wavelet t ransform of s satisfies uniformly in (b, a)  e H 

W'gs(b, a) = O(s(b) + s(a)) 

The analyzing wavelet should satisfy g e L~(R) and sg e L~(R). 

Proof. First note that  by symmetry  and mono tony  we have 

s(t+u)=s(It+ul)<~s(Itl+lul) 

Now either 2 Itl > Itl + lul or 2 lul > Itl + lul. Therefore by mono tony  and 
submultiplicativity 

sO+u)<~s(2 I t l ) + s ( 2  lul)~c(s(Itl)+s(lul)) 

822177/3-4-20 



(i) 
(ii) 

Then 

814 

Therefore we may estimate 

I_+~ art!  

=lf+_~ dt ~ ( t ) s ( a t + b ,  

<~ dt Ig(t)l [s(a I t l )+s(Ibl )]  
-- oo 

~< 0(1)  Ilsgll L.,RI s(a) + O(1 ) Ilgll L'(R)s(b) 

and the lemma is proved. I 

The case o is treated by the next iemma. 

L e m m a  3.7.  Let r be a nonnegative, even, submultiplicative func- 
tion, and let s be a function that satisfies: 

Is(t)l ~< cr(t) for all t. 

s(t) = o(r(t)), (t ~ 0). 

Holschneider 

~gs(b, a) = o(r(b) + r(a)) (b, a ~ O) 

The wavelet should again satisfy g e L 1 (•), rg ~ L ~ (R). 

Proof. For  every e > 0 we can find an r /> 0 such that Is(t)l < e [r(t)l 
for [tJ < r/. Splitting the integral into two parts, we may write 

I ~ s ( b ,  a)l ~< dt Ig(OI" Is(at + b)l 

[at + bl < q lat + bl >~ q 

In the first term we have by hypothesis on q and submultiplicativity of r 

Xt ~<~O(1) J " dt lg( t ) l  [r(a) r ( t ) + r ( b ) ]  
l a t + b l < q  

~<eO(1) Ilrgll L ,iRir(a) + eO(1) Ilgl[ L'inl r(b) 

<~ eO(r(a) + r(b)) 
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The second term may be estimated using the global estimation of s, 

X2<~o(1) f dt Ig(t)l [r(a) r(t)+r(b)] 
lat + bl >>- q 

<~O(r(b)+r(a)) I dtlg(t)l [r(t) + 1] 
lat + hi >I rl 

Now Ig(t)[ J r ( t )+  1] is integrable, and therefore for a and b small enough 
the integral is smaller than ~, since it runs over a smaller and smaller 
neighborhood of infinity, and thus 

X2 < ~O(r(b) + r(a)) 

Since E was arbitrary, the lemma is proved. 1 

This also shows the theorem. 1 

3.1. Inverse Theorems for Global Regularity 

Here we shall prove some inverse theorems concerning the proof 
of global regularity through the wavelet coefficients. The general setting 
will be as follows. Suppose we have a position-scale representation of a 
distribution s, 

fo~-daf +~ ! (t~ab) s(t)= --  db@(b, a) h 
a ,~ 

with some polynomial-bounded scale-position coefficients 

I~(b ,  a)[ <~c(1 + Ib[)" ( a +  1/a)" 

We then may split s into two parts, 

Io~daf +~ ' (t~ab) s(t)= a J  ~ dbJ-(b ,a)-h  
, ( I  

= da+ db3_(b,a) lh 
a 1 -~ a 

= Ssman(t) + Slarge(t) 

Now the large-scale reconstruction Slarg e is a smooth, polynomial-bounded 
function. Therefore the local behavior of s is only determined by the small- 
scale behavior of Y-. In the following theorem we show that uniform 
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H61der regularity and similar ones may be completely characterized by the 
decay of the modulus of the scale-space coefficients as the scale gets small. 

Theorem 3.8. Let ~- be some scale-space coefficient of s. Suppose 
that for large a, ~-- is rapidly decreasing. Then in the limit a ---, 0 we obtain 
the following classification: 

lY'(b, a)l < ~ c a ' = ' s ~ A ' ( R )  

lY-(b, a)l = o(a ~) ~ s ~ 2"(R) 
a,// lY'(b, a)l ~< ca ~ log p a ~ s ~ A,os(R ) 

lY-(b, a)l = o(a ~ log o a) ~ s ~ 2~,;~(~) 

The reconstruction wavelet should be compactly supported and [ct] + 1 
times 3 continuously differentiable. 

Together with Theorem 3.3 this shows that the uniform regularity with 
nonintegral regularity exponent may be completely characterized through 
the small-scale behavior of the absolute value of the wavelet coefficients. 
The proof is again a corollary of the two more general lemmas that show 
that actually this kind of uniform local regularity analysis applies to 
submultiplicative regularities in general. 

T h e o r e m  3.9. Let r be a nonnegative, monotone, even, submulti- 
plicative function that satisfies for some n e 1%1o: 

dt  
(i) t-i--~,,r(t)<oo. 

r ~ dt 
(ii) Jtl ~ r ( t ) < ~ .  

Let 9 be some scale-space coefficients of some function s. 
Y-(., a) = 0 for a > 1. Then if 

lY-(b, a)l ~< cr(a)  

Suppose 

it follows that s is n-times continuously differentiable and its derivative 
satisfies uniformly 

IO"s(t + u) - O"s(t)l ~ O(r (u ) /u" )  

3We denote by [t] the biggest integer ~t. 
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If the space-scale coefficients satisfy in addi t ion  

lY'(b, a)l = o(r(a))  

we have uniformly in t 

IO"s(t + u) - O"s(t)l = o(r(u)/u")  ( u - , 0 )  

In both cases the reconstruct ion wavelet is supposed to be compact ly  
suppor ted,  having n + 1 cont inuous  derivatives. 

Condi t ion  (i) ensures a certain decay at small  scales. Condi t ion  (ii) 
ensures that  this decay is not  too fast. Indeed,  because of the submult i -  
pl icativity of r we have r(t)>~ c/r(1/t).  N o w  by (ii) and m o n o t o n y  of r we 
have t ~ +"r(t) --* 0 as t -" ~ .  Therefore we have t - " -  ~r(t) -" oo as t -" 0, or  
what is the same 

t ' + " = o ( r ( t ) )  ( t - ' O  ) 

Thus in some sense condi t ions  (i) and  (ii) ensure that  the local f luctuation 
is "bounded  away" form the po lynomia l  behavior ,  which would be ,-~ t n 
and ~ t" + 1. 

Before we come to the proof, we recall the scheme of finite differences. 
Let A be the following opera tor :  

A: s ( t ) ~ - - ~ t - l ( s ( t ) - s ( O ) )  

Then we say the n th difference quot ient  of  s exists at  t = 0 iff 

AA . . .  As( t )  

converges to some finite number  as t -" 0. We usually write A" for the 
above expression. The n th difference quot ient  exists at  0 if there is poly-  
nomial  of  degree n such that  

s(t)  = en ( t )  + O(r( t ) )  

with some r ( t ) = o ( t " ) .  In addi t ion,  this est imate is equivalent  to having 
that  the following est imate holds: 

13"(t) - d"(0) l  ~< O(r( t ) / t  n) 

For  later use we note the following communica t ion  relations: 

zt"Tb = TbA", A"Do = a - " D a A "  
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In particular we have for hb.,, = T b D a h  

,d"hb.,~=a-"(A"h)b., ~ 

Therefore if h is n-times continuously differentible and compactly supported, 
we have in particular 

IIA"hh.oll ;_,~ <~ ca -" (3.2) 

with some c not depending on b or a. 

Proof. By translation invariance it is enough to analyze s around 0. 
By an overall rescaling we may suppose that the support  of h is contained 
in [ - 1 / 2 ,  + 1/2-]. We only need to consider the case t > 0, since the case 
t < 0 is analogous. By hypothesis on s we may write pointwise (0 < t ~< 1 ) 

s( t )=~[ 'da+f  'da} +~ a, t :oa  : , - - f - o ~  (~ab) ' )  ~--(b' 

= Xl(t) + X2(t) 

We now prove the O part. 

X~. Using the decrease of the wavelet coefficients 3 - =  O(r(a)) at 
small scales, we may write 

'daf+~ [la (t~ab) IX2t <<" [':o db h 13-(b, a)[ 

['dar(a) 
= O ( 1 )  IlhllL,~n~j ~ a 

= O ( r ( t ) )  

Because of condition (i) we certainly have r(t)=o(t") as t--*0 and thus 
X~(t) has a finite differential quotient of order n at 0. In the last equation 
we have used the fact that, because of the submultiplicativity of r, we have 

Io' dar(a)= Io dar(at) <~ O(r(t)) Io dar(a)= O(r(t)) a a a (3.3) 

X 2. S ince  h is n + 1 times continuously differentiable, we may write 
for hb.,~ = TbDah 

d"hb,~( t) -- d"hb,~(O) = tdd"hb, a( O 
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In particular from (3.2) we have 

f+~db Izl"hb.~(t) -A"hb.,,(O)l <~ O(ta 1) 

Thus  we may write 

l da f + ~ 
~,~ a _~. I#'X2(t)- #'X2(0)l 

f,t a-"r(a) da 
<~ O(t)  a 

db Id"hb, dt) - a"hh.o(0)l - I J ( b ,  a)l 

In the last equat ion we have again used the submultiplicativity of r via 

819 

ti,' aa ~,/, aa r(a) =.,  ~ r(a) t-" 

<<.0 -, ~ r ( a ) = O \  t" J (3.4) 

since by hypothesis on r the integral is convergent. 
All this taken together shows that  zJ"s is continuous and satisfies the 

stated estimates. 
To prove the o part  of the lemma, we remark that it is enough to 

replace est imations (3.3) and (3.4) by their o version. Suppose therefore 
that v is a nonnegative function that satisfies 

v(t)=o(r(t)) ( t~O) 

Then for every e > O  we can find an q, O < q <  1, such that  Iv(t)l <~r( t )  
whenever 0 ~< t ~< q. Therefore for t small enough 

~o da v(a) <~ Jo f '  da r(a) <~ 

showing, because ~ was arbitrarily chose, the o analog of (3.3). 
For  the analog of (3.4) we obtain, for fixed ~ and t small enough with 

the same r/ as previously, 

t a-5--~.v(a)=t + a-i--~.v(al=a,(t)+a2(t ) 
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Now by submultiplicativity of r we have as before 

tr2(t ) <~ O ( t )  ~ v(a)  <~ 0 j , / ,  a 2 + ,  r (a )  

By condition (ii) the integral tends to 0 as t---,oo and 
try(t)  = o ( r ( t ) / t " ) .  

By hypothesis (ii) on r we have for t small enough as in (3.4) 

thus 

a,(/)~< t J~ a - T - ~ v ( a ) < ~ e t  a - T ~ r ( a ) < < . e O  

Since e was arbitrary, the theorem follows. I 

3.2. The Class of  Zygmund 

Until now we had to exclude the case A=(R) with ~te ~. We will show 
now that the appropriate global regularity class of functions that can be 
analyzed by the wavelet transform in the case of integer exponents is the 
class of Zygmund. 

D e f i n i t i o n  3.10. A function s is in the class of Zygmund--wri t ten 
A*(R)-- i f  it is continuous and if it satisfies 

IS(to + t)  + s ( t  o - t)  - 2s(t0)[ ~< c Itl (3.5) 

uniformly in to. We may s is in 2*(R) if the same estimate holds with O 
replaced by o. 

Functions in A*(•) do not have cusps, as can be seen from the 
identity 

S(to + t)  + s ( t  o - t)  - 2S(to) = ( s ( t  o + t )  - S( to))  - (S(to) - S(to - t ) )  

Therefore, e.g., the function It[ logltl is not in A*(R). However, the func- 
tion t log It[ is in the class of Zygmund. We now show how to characterize 
these regularity classes in wavelet space. 

Theorem 3.11. Let s in the class of Zygmund A*(R). Then 

~//'gs(b, a)  = O ( a )  (a --* O) 

If s~2*(R) ,  then the same estimate holds with O replaced by o. We 
suppose that g is in So(R). 
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Remark. The assumption on g is much toos t rong  and for technical 
convenience only. In the proof we will see how it can be relaxed. 

Proof. First suppose that g is even, 

g(t)=g(-t)  

Then we have by symmetry and S_+~ dtg(t)= as usual 

~/'gs(b,a)=I+~dtl~(t]s(t+b) 
_~ a ka/ 

(t) x-~f d t l~  {a(t+b)+s(-t+b)-Zs(b)} 
- - o o  a 

Using the estimate (3.5) and the fact that s is bounded, we may estimate 
the parenthesis by O(t) and the theorem follows. Suppose that h is not 
symmetric. The wavelet transform with respect to h is obtained from the 
one with respect to g by the action of the reproducing kernel. This function 
is localized enough and thus it does not change the decrease of the wavelet 
coefficients at small scale (see, e.g., Section 4 below). 

The proof of the o part is analogous. I 

But also the inverse theorem holds. 

Theorem 3.12. Let s be a function with position-scale coefficients 
~-- supported by a ~< 1 that satisfy 

Y(b ,  a) = O(a) 

uniformly in b. Then s ~ A*(R). If the same estimate holds with O replaced 
by o, then s~2*(R) .  The reconstruction wavelet should be two-times 
continuously differentiable and compactly supported. 

Proof. By translation invariance it is enough to estimate 

s(t) + s ( - t ) -  2s(O) 

To each term corresponds an integral over some influence cone of h. The 
integrals over the region 0 < a ~< t may be estimated as previously. In the 
only new term X3, say, we may wite, using the regularity of h, 
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with some t'~ I-0, t]. We therefore end up with 

1 

a _~ ab x~=I, aaI+~ 

f, t daa_ ' = O ( q )  
= O ( ? )  IIh"ll L~CRI a 

The proof  of the o part is similar. I 

By what we have shown so far this implies via the characterization of 
the H61der spaces through wavelet transforms the following for the 
regularity of the Zygmund  class. We have 

A'(0~) => A*(R) => A~(R) 

for 0 < ~ < 1. But, as follows easily from the proof  of Theorem 3.9, we even 
have a little more precise information: a function in A*(R) satisfies 

]S(to+t)-S(to)l =O(tlogt)  (t-*O) 

Indeed the logarithmic correction comes from the term Xz, as can be easily 
seen. 

3.3. Inverse Theorems for Local Regularity 

As we have seen, a local H6lder regularity implies a local decrease of 
the wavelet coefficients. On the other hand, as we just have proved, an 
overall decrease of the scale-space coefficients proves a global regularity of 
the reconstructed function. However, to prove local regularity through 
scale-space coefficients, we must suppose some stronger conditions. 

T h e o r e m  3.13.  Let s be a scale-space representation 9-- that 
satisfies at small scale a < 1 for some for some 7 > 0: 

(i) # - ( b , a ) =  O(a ~') uniformly in b. 

(ii) #-( to  + b, a) = O(a =) + O(b=/log b) (b, a --* 0). 

At large scale we suppose that 9-" is rapidly decaying. Then s has at To a 
local regularity exponent ~ in the sense that 

IS(to + u) - P,,(u)l -- O(u =) (u --* 0) 

with some polynomial of order n, cc - 1 < n < ~. 
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Again this theorem holds for submuitiplicative remainders in general. 

T h e o r e m  3.14.  Let r be a nonnegative, submultiplicative function 
that satisfies for some n~ ~1o: 

(i) 7 r(t) < oo 

i 
v dt 

(ii) t--2-;-7 r(t) < oe 
1 

Let s have scale-space coefficients 9"- supported by a ~< 1 that  satisfy with 
some 7 > 0: 

(iii) ~--(b, a) = O(a ~') uniformly in b. 

(iv) g-(~o+b, a)=O(r(a))+O(r(b)/logr(b)) (b, a-*O). 

Then there is a polynomial  P,, of degree n such that  

S(~o+t)=P,,( t)+O(r(t))  (t-*O) 

If we have in addit ion 

~(~o + b, a) = o(r(a)) + o(r(b)/log r(b)) (b, a --* O) (iv') 

then 

s (%+t )=P, ( t )+o(r ( t ) )  (t-*O) 

The reconstruction wavelet should be n + 1 times continuously differen- 
tiable and compact ly  supported.  

Proof. We may suppose that 7 < 1. Then with the help of the func- 
tion r / ( t )= r(t) 2/~ we may split the integral into several parts: 

s( t )=f~ '"daf+~ 1 (t__.~_) _ ab-ha J-(b, a) (X,) 

7s+2 + db - h J-(b, a) (X2) 
c,I - a 

I l d a l  +~' l h ( t - b  ~ + - -  db #--(b, a) (X3) 

The contr ibut ions of these terms will be estimated independently. 
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may estimate 

r(t) 
=IIhlIL,tR~O(1) Ilogr(t)-----~ 

=O(r(t)) 

log(-~))+O(r(t)) 

by the choice of q and since by hypothesis (ii) on r we have log( t )= 
O(log(r(t)). 

X3. This term may be treated in the same way as X" 2 in the proof of 
Theorem 3.13, and the O part of the theorem is done. 

The o part follows by the same considerations as before. II 

C o r o l l a r y  3.15. If 5 satisfies 

(i) #-(b, a) = O(a ~) with some small 7 > 0 

(i i) #' - ( ro+b,a)<~ O(b~ + a  =) (b ,a - - ,0 )  

then Is(~r o + t) - s(~0) I = O(t = log(t))  (t ~ 0). 

Proof. The logari thm is exactly the contr ibut ion of the second term 
in the previous demonstration. I 

X~. Using the global H61der regularity of s, we 
f = O(aY), which leads us to 

r.(') da f + o~ 
IX'l~<Jo 'a- J - ~  db ~h (~ - -~ )  - IJ-(b, a)l 

f "(') da 
- -  E l  ? =O(1)llhllv(R) 0 a 

By the choice of ~ we obtain XI = O(r(t)). 

X 2. Since h is compactly supported, we have under the integral 
a <<. O(t) and b <~ O(t). Therefore we may estimate 

I~-(b, a)[ = O(r(a)) + O(r( t)/log r(t)) 

By the same methods as for the term X~ in the proof of Theorem 3.9 we 
can show that the contribution of the first term is of order O(r(t)), and we 
thus end up with 

IXzJ~<f '.,,)daI+~176 -~ lh(t~ab)a -[J-(b,a)[ 

r(t)r(t)_........~1%,,)f' da+~ [~ ! (~-a b ) = O(1) . db h + O(r(t)) 
Ilog 
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3.4. Po in twise  D i f fe rent iab i l i ty  and W a v e l e t  Analysis 

We now want  to study pointwise differentiability with the help of 
wavelet transforms. As we have seen in Section 3, the wavelet t ransform of 
a polynomial -bounded function s that  is differentiable in ro satisfies 

9"-(~o + b, a)=o(lbl  +a)  

The analyzing wavelet should satisfy g~L~(R) ,  tgeL~(R),  and 
S g = ~ tg = 0. To  generalize the setting, we will once more  consider fluctua- 
tions a round polynomial  approximat ions  

S(ro + t) = P,(t)  + o(t") (t --* O) 

or what is the same 

d,,(t) = o( l )  ( t ->O) 

where d k + l ( t ) =  t - l [ A k ( t ) - - d k ( O ) ]  and do( t )=S(ro+ t). In this case we 
say that  the n th  differential quotient of  s exists in r o. In wavelet space this 
regularity implies a decrease of 

~ s ( b ,  a) = o(a" + Ibl") (b, a ~ 0) 

whenever the wavelet is localized enough enough and its first n moments  
vanish. 

Now we will prove an inverse theorem that  relates the local decrease 
of the scale-space coefficients of the function to the differentiability of the 
function itself. We will see that  it is not possible to prove the full inversion 
of the preceding, but a slightly stronger hypothesis on the wavelet side is 
needed to prove the differentiability of a function through its scale-space 
coefficients. 

Theorem 3.16.  If the scale-space coefficients J ( b ,  a), Y - = 0  for 
a > 1, of some function s satisfy 

(i) Y'(b, a) = O(a ~) uniformly in b 

(ii) 9"-(zo+b, a ) = O ( r ( a ) + r ( b ) )  

with an arbi t rary y > O  and with a nonnegative, monotone  function 
r - - r ( l a l )  satisfying the Dini condition 

a--y-g 5 r( a ) < oO 

then the nth  differential quotient of s exists in To. Fur thermore,  the condi- 
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tion on r is optimal. The reconstruction wavelet h should be n +1 times 
continuously differentiable and compactly supported. 

Proof. As usual we suppose zo = 0, t > 0, and y < 1. As in the proof 
of Theorem 3.13, we only need to estimate the small-scale integral. Again 
with the help of the function q(t) = r(t) 2/;', we may split the reconstruction 
integral into several parts, 

s ( t )=Jo  --a-f_~ dblha ~--(b,a) (X,) 

+ d b - h  ~-(b,a) (Xz) 
l ( t )  - -  a 

f, l daa f +~ 1 ((--~-ab) + - - j  d b - h  J-(b,  a) (X3) a 

They will be estimated independently. 
As in the proof of Theorem 3.14, we have X~(t), X 2 ( t ) = O ( r ( t ) ) =  

o(t"). Hence the nth differential quotient exists at t = 0  and we only need 
to consider A"X3. As for X 2 in the proof of Theorem 3.9, we have 

f, i d a  IA"X3(t) - zl"X3(0) I ~< O(t) a-T~ . r(a) 

and we have to show that this expression becomes arbitrarily small as 
t ---, 0. Clearly l i m ~  o a - " -  lr(a) = 0 and therefore, given p > 0, we can find 
6 > 0 such that a . . . .  Ir(a) < p for a < 6. Thus 

t l, t daa-"-lr(a)<~tP I,~ da+ t I] " a a 

The second term goes to 0 with t and the first term can be made arbitrarily 
small since p was arbitrary. Therefore the first part of the theorem is 
proved. 

That the condition on r is actually the weakest possible can be seen as 
follows. We limit ourselves to n = 1; the general case is similar. Consider a 
function g in the Schwarz class whose Fourier transform is supported by 
[ I ,  2] such that the functions 2J/Zg(2Jt), j =  1, 2 ..... are an orthonormal set. 
In addition we suppose that g ' ( 0 ) =  1. Then let 

s(t) = ~ 2-JQ(2-J) g(2Jt) 
j = l  
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with a continuous, positive, monotone,  bounded function Q. The wavelet 
transform of s with respect to g satisfies 

~gS(0, 2 - j)  = 2 -JQ(2 -J), j = 1, 2 .... 

Now s is differentiable for t =~ 0 and therefore A ( t ) =  t - ' I s ( t ) -  s(0)-I can be 
written as 

A(t) = ~ Q(2-J) h'(2Jz) 
j= l  

with some z = o(1) for t--* 0. Now Q satisfies a Dini condition if and only 
if 

~ Q(2 - J )<  oo 
j = J  

and therefore this same condition implies the differentiability of  s at t = 0. 
On  the other hand, suppose that s is differentiable at t =0 .  By an 

overall dilation we may suppose that g'(t) ~ 1 for t E [ -  1, 1-]. Then 

A(t) ~ ~, Q(2-J) + )-" Q(2-J) g'(2J'r) = X~ + X2 
2-1>~ t 2 - J  < t 

Since Q is uniformly bounded and since we have 

E Ig'(2Jv)l~< sup ~ Ig ' (2 J r  
2 - J < r  ~e  [1/2.1]  j =  1 

it follows that X2 stays bounded as t--* 0. The same then must be be true 
for X, since zt(t) stays bounded. This shows that Q satisfies a condition 
of Dini and so tha wavelet transform of s satisfies the condition of 
Theorem 3.16 if and only if s is differentiable in 0. II 

We may even use the wavelet transform to compute  the value of the 
derivative, if it exists. The following theorem is a generalization of a 
theorem due to Fatou. 

T h e o r e m  3.17. Let s be a periodic function or  a measure. Suppose 
that at 3o the n th  derivative O,S(ro) exists. 4 Let g e L ' ( R )  and tngELI(R) 
be an analyzing wavelet that satisfies: 

(i) dt tkg( t )=O for k = O  ..... n - I  

(ii) dt t"g(t)= < n! .*~ (iO,o)"~(O)=2rcn! 

4 By this we mean that the finite difference quotients have a limit. 
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Then 

l i m a - "  ~/rgS(Zo, a) = O;'S(Zo) 
a ~ O  

Proof. 

+ ~ 1 _ { t  -- b~['OTS(~o)t"  s(b, a) 
. 

J 

and the theorem follows. 1 

Writing s(t) = P , _  l(t) + O'~e(To) t"/n! + o(t"), we obtain 

- -  + o(t")) = a"O,S(Zo) + o(a") 

3.5.  T h e  C lass  W ~ 

As we have seen, global regularity can be characterized by a certain 
decrease of the modulus of the wavelet coefficients at small scale. Local 
regularity in the sense of fluctuations around a polynomial approximation 
could not be completely characterized: a little more is needed on the 
wavelet side. However, it is possible to define classes of local "wavelet 
regularity" that are characterized through the modulus of the wavelet coef- 
ficients. Let r be a monotone, nonnegative, submultiplicative function that 
satisfies some global estimate of the form 

Ir(t)l ~< O(1 + t2) ~'/2 

for some 7 > 0. 

Def in i t ion  3.18. We then say that a function (or distribution) s is 
of local WX" regularity at zo iff for some admissible wavelet g ~ So(R) we 
have 

I fCrsS(~o+b,a)l<~O(r(b)+r(a))  (b,a--}O) 

This is well-defined since we have the following results. 

T h e o r e m  3.19. The definition does not depend on the analyzing 
wavelet: if s is of regularity W" with respect to some admissible g E So(R), 
it is of the same regularity with respect to any other h E So(R). 

Proof. Indeed the wavelet transform of s with respect to h ~ So(R) is 
obtained through convolution over the half-plane with H = cg ~ g, which 
is a highly localized function. Therefore we may exchange the integrals in 
the following expression and obtain 

~176 f+~176 l l _ l ( . b - b '  a'~ 
Io a --7" J_ ~ a' ' a ' )  r(b) Go r(b) 
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with Ga(t)= G(tla)la and 

G(t) = ~ _ 
:o 

This function is again in So(R) and thus by Lemma 3.6 this first expression 
is estimated by O(r(b)+ r(a)). 

In the same way we have 

where 

I :  da's+cOdb'lH( b b' --7- a' a 'a' I :  d a ' H ( a )  -- r(a)= - -  r(a') 
- o r  a '  --a 7 

i 
- t - c O  

H(a) = db H(b, a) 
-cO 

This function is highly localized in the sense that 

[H(a)l ~< O((a + I/a) -~) 

for all ~ > 0. We therefore have 

s:da'iH(a -~ rcOda' (1,) 
r(a')=:o ~ H  ~ r(aa') 

<~ O(r(a)) I :  --~7-H(1) r(a') da' 

which is again O(r(a)) because the integral is convergent. | 

4. THE B R O W N I A N  M O T I O N  

As a first application of the regularity analysis through wavelet trans- 
forms we analyze the regularity of a typical trajectory of a Brownian 
motion. In particular we want to redemonstrate the theorem of L6vi that 
states that with probability 1 it is of regularity A ~/2.~/z Consider a 

l o g  " 

modulated delta-comb 

+ c O  

ya(t)= ~ ca(n) 6(t-2n) (4.1) 
n ~  - - c O  

Ca are independent real-valued random variables. where the amplitudes 

822/77/3-4-21 
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Each of them is dis t r ibuted according to a Gauss ian  law with mean value 
/l = 0 and variance a~ > 0, 

f '  1 e -r d~ Prob{c;.  ~< t} = - ~  d~ (2~0.)1/2 

Consider  a rapidly decaying cont inuous  function. The act ion of the random 
measure  (4.1) on s is itself a r andom variable 

),~.(s)= ~ s(;~n) 

Because the sum of Gauss ian  r andom variables with mean values /~ and 
/12 and variances a~ and a~ is again a Gauss ian  r andom variable with 
mean value / l = / l  I +/~2 and variance a z = a ~ + a ~ ,  we have that  /l).(s) is 
d is t r ibuted with a Gauss ian  law with/~ = 0 and variance 

2 9 ff =a;. ~ Is(2n)l 2 

Therefore if we choose a~. = w/~, the dis t r ibut ion of the r andom variable  Y~. 
will tend as 2 ~ 0 to a Gauss ian  dis t r ibut ion with 

/ l = 0 ,  a 2 =  dt Is(t)l 2 
--:X3 

The limit r andom measure 7a ~ W is known as Wiener  measure,  or  white 
noise. Cons ider  now the primit ive of the measures ),~., 

f2 F;.(t) = 7~.(du) = ~ c).(n) 
0 < 2 n ~ < t  

This function can be interpreted as a r andom walk with independent  
r andom increments at all points  2n, n e 7/. The limit r andom walk 2---, 0 
exists and is known as Brownian motion,  

B(t) = f~ W(dt) 

Now consider  wavelet coefficients of the Wiener  measure with respect to 
some o r thonorma l  wavelet g e S0(R), 

f -t- oC~ ~.k  = ~ W(k2-J, 2 - Q  = W(dt) 2 J g ( 2 h -  k) 
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These numbers are again random variables. The correlation between two 
values of wavelet transform is given by the reproducing kernel. Therefore 
in the case of orthonormal wavelets these random variables are independ- 
ently distributed. Each of them has a Gaussian distribution with 

Flj.k = 0, a ~  = 2 j 

The absolute value I','~.kl has a Z distribution with density 

Prob{13q/i.k I ~ < t } = ( ~ )  odue-" /2~ , .~= Jo d u e  ,,'-~2 

We claim that from this it follows that given c > - l o g  2 and given any 
interval I c  R, we can find with probability 1 an integer Jo such that 

I "#.'j~kl ~< (c Ijl) I/z 2 j/2 (4.2) 

for all indices j , k  such that 2 - J k E I  and J>~Jo. Translated into the 
continuous wavelet transform language this implies that almost surely we 
have 

~'g W(b, a) = O(a ~ i/2 logl/Z(a)) (a ~ 0) 

Thus for the Brownian motion--the primitive of W is essentially obtained 
through multiplication with a in wavelet space--we then have shown the 
following result. 

T h e o r e m  4.1. The Brownian motion is with probability one in the 
class A1/2.~/2 namely " ' log 

t } Prob tlim,,4sup§ [u log(I/u)] t/2 < oo holds for all t �9 [0, 1 ] = 1 

ProoL It remains to show that the above assertion (4.2) holds with 
probability one for j large enough and k2 j in some interval. By dilation 
covariance it is enough to consider the interval [0, 1). Here we need the 
famous 0, 1 law of probability theory. It roughly states the following: let 
Xl,  x2 .... be an inifinite family of independent random variables. Suppose A 
is an event that depends only on the infinite tail, namely on x,,, x,,§ ~ .... for 
n arbitrarily large. Then A occurs with probability 0 or with probability 1. 

We start by noting that the random variables I~.kl with 2 - J k � 9  [0, 1), 
j ~< 0, may be enumerated in such a way that the small-scale behavior is in 
the infinite tail of the sequence. Consider now the event that all numbers 
Igts,.~l satisfy the inequality above for al j large than some Jo. This event 
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clearly depends only on the infinite tail of the ordered sequence of random 
variables. Its probability is therefore either 0 or 1. Let us compute the 
probability that Jo= 1. This probability is a lower bound for the former 
probability. It is given by the infinite product 

Prob{ I'/e~j.kl ~ (cj) '/2 2 -//2 } = f due -'=/2 
j ~ l  ~0 

Here we have use the fact that for a given j the 2 j random variables I~r 
with 2 - Jke  [-0, 1) have the same probability law. From the asymptotic 
form of the integral 

f, due-"2/z=O (t--*~) 

we see that the infinite product is convergent. Indeed convergence of the 
product is assured by the absolute convergence of the series 

~. 1 . . c o  1 + 

___~.2~e-,j= ~ __e- i , .  iog2)lJl 
j=l .~/j j=l v//j ' 

c > - l o g  2 

Therefore for all c > log(l/2) we almost surely can find some Jo such that 
the required estimation holds for all scales smaller than 2-J~ II 

5. THE  N O N D I F F E R E N T I A B L E  F U N C T I O N  OF W E I E R S T R A S S  

In the year 1872 Weierstrass introduced his famous function 

tr( t)= ~ ~x"cos(fl"t), 0 < c x < l  
n = l  

He could show that this function is continuous but nowhere differentiable 
whenever the product ct-/3 does exceed a certain value. Later Hardy 
showed that ct . f l> 1 is all that is needed. We now want to re-prove the 
result of Hardy with the help of the wavelet transform. It will become a 
two-line proof. 

By computation in Fourier space we obtain 

~fgs(b, a) = ~" o~"~(fl"a) e 't~"b 
n =  1 
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We may choose geS+(R) in such a way that s u p p ~ c  [1, fl]. Then the 
different frequencies decouple and we obtain 

I~'gs(b, a)l = ~ ~" I~(fl"a)l 
/ 1 =  1 

Choosing a,,,= fl-", we see that this function does not decay with o(a), 
thereby showing the nondifferentiability of tr. Instead we have 

~gs(b, a)= O(a I~176 

and this is the best possible estimation. Therefore a e At~176 but not 
in 21~176 In particular, a is nowhere differentiable. 

We may even choose ~ . f l =  1. In this case we find that aEA*(R) but 
not in 2"(•), whence tr is still not  differentiable. 

Remark. Clearly the same argumentat ion applies to other lacunar 
Fourier series; that is, for sums of the kind 

~ 7k cos(2kt) 
k = l  

with 2k/2k + ~ > I + e uniformly in k. 

6. SELF-S IMILARITY A N D  THE R E N O R M A L I Z A T I O N  G R O U P  

We do not give a precise definition of what we call a fractal. Roughly 
speaking, a fractal is an object - - for  us a function or dis t r ibut ion-- that  has 
structure at all length scales. Therefore if we look at our object with a 
microscope more and more details will appear. Therefore these objects 
cannot be modeled by a smooth function. A smooth function looks at small 
scale essentially like a constant function. Very often fractals display a 
behavior known as self-similarity. This means that while looking at smaller 
and smaller scales we get the same features again and again. To be more 
preciose, consider the local functioon S,oc that describes the fluctuations of 
s around some point to: 

S,oc(t) = S(~o + t) - S(ro) 

Then local self-similarity would mean that for some rescaling factor 2 we 
have in some sense 

S,oc(2t) ~- CS~oc(t) 
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Therefore upon iterating we get with y = 2" 

Sloc(Tt) ~_ "),~Stoc(t ) (6.1) 

The only functions that satisfy this scaling invariance for all t' are the 
homogeneous  functions. This motivates  the following definitions already 
used in ref. 7. 

D e f i n i t i o n  6.1.  A function s satisfies at re the exact scaling 
condition (ESC) if 

Slo=(t)=c_ ItlL + c +  ItJ~_ +o(t ~) (t-*O) 

The exponent  ct is called the local scaling exponent  at re. 

If instead Eq. (6.1) does not hold for all rescalings 1' but only for ), = 2" 
we have another  class of functions called the periodic scaling class. 

D e f i n i t i o n  6.2.  A function s satisfies at re the periodic scaling 
condition (PSC) if 

Sjoc(t)=c_(t) ItlL +c+(t)Itl+ + o ( t  ~) ( t ~ 0 )  

where c• satisfy the discrete scale invariance 

c • • 

with some constant  2 >~ 1. 

Remark  I. The number  ct is called the local scaling exponent, or local 
fractal dimension. It is actually a dimension, because it relates the t scale to 
the s scale, as, for instance, the "volume scale" is related to the "length 
scale" by a third power, which i.s the dimension of a volume. 

Remark  2. We note that  the exact scaling condition may be seen as 
a special case of the discrete scaling condition. In turn we may identify the 
periodic scaling condition with superpositions of functions satisfying the 
exact scaling condition, but with complex scaling exponent  ct + ifl. 

Clearly the functions that satisfy PSC are locally self-similar in the 
sense described above. The greatest part  of this section will be devoted to 
giving a sufficient criterion in wavelet space to show that  the analyzed func- 
tion actually satisfies ESC or PSC. The principal term can be obtained by 
direct computat ion.  The remainder,  however, is much more difficult to 
treat, as we shall see. 

Sometimes the concepts of ESC and PSC are too strong and they shall 
be replaced by the following more  general definition. We have defined the 
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local function Stoc as the fluctuation of s around its value at a given point. 
However, to be more general, we consider the fluctuations of s around any 
local polynomial approximation of s; that is, if there is a polynomial P,, of 
order n, such that 

S ( r o + t ) = P , , ( t ) + o ( t " }  ( t ~ O )  

then we set for the highest such n 

Sloe(t) = S(ro + t) - P(t)  

Therefore to look at the fluctuations of a function around some local poly- 
nomial approximation amounts  to considering the function modulo some 
polynomials. This can be done by taking s as distribution ion S~(R). 

To look at the fluctuations of s with a microscope can now be 
formalized as rescaling the t coordinate by t r--, 2t with some 0 < 2 < 1 and 
rescaling the fluctuation scale of s in such a way that this process becomes 
eventually stabilized in a nontrivial way. 

D e f i n i t i o n  6.3.  A function (or distribution) in S~ has a local 
renormalization (around 0) if there is a sequence 2,,  0 < 2 ,  < 1, and a 
sequence c,, such that the sequence 

s,,+t(t)=c,,s,,(2,,t), So( t )=s( t )  

satisfies 

lira s,, = s* 4:0 

where the limit holds in S~(I~). The function s* is called the local renor- 
malization of s. 

By translation we can define the renormalization around every point 
in the obvious way. 

The local fractal dimension is again defined as the relation between the 
t scale and the fluctuation scale. That  is, we set 

log c,, 
c t = ~ ( t o ) = -  lim 

. . . . .  log 2, 

whenever this limit exists. 
Usually the rescaling constants c,, are fixed by taking some function 

q ~ So(R)--supposed to "'measure" in some sense the fluctuation scale--and 
then by requiring that 

q ( s , , ) = ( q l s , , ) R = l  for all r /~No (6.2) 
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This gives rise to a mapping  of S3(R) into itself, 

~l:,.: S'o(R) ~ S'o(R), s---~ cs(2t) 

where c is fixed by (6.2). This is called the renormalizat ion map. It satisfies 
the semigroup proper ty  

To  have a local renormalizat ion with 2,  = 2" now means that s is in the 
attracting domain  of some fixed point s* of some renormalizat ion map  

~ T s  ~ s* (n --* oo ), and ~ . s *  = s* 

R e n o r m a l i z a t i o n  in W a v e l e t  S p a c e .  We now want to compute  
the renormalizat ion t ransformations in walet space. Suppose s has a local 
renormalizat ion at to = 0 with scale-fixing functional g. It is clear from the 
covariance of the wavelet t ransform under dilation that the renormalizat ion 
procedure reads in wavelet space 

~,,(b, a ) ~  c,, ~,,(2,,b, 2 ,a)  (6.3) 

where the scale is fixed by 

W,,,(fl, ~) = 1 for some (fl, ct)~ H 

The convergence 
~,,,(b, a)--* YC/'*(b, a) (6.4) 

is pointwise. In addition, since, as we have seen before, the wavelet trans- 
form is continuous in the topology of So(R), therefore ~ s *  = "W*. 

Now consider the inverse problem. Suppose we have a sequence of 
numbers  c,, and 2,, such that (6.4) converges. Does this imply that the 
analyzed function had a local renormalizat ion? The answer is given by the 
following theorem. 

T h e o r e m  6.4. Suppose that  the wavelet t ransform of a function 
s E S~(R) with respect to some admissible wavelet g e So(R) satisfies 

lim ~r a) = "#/*(b, a) ~ 0 

pointwise for every (b, a) ~ H. Suppose further that  for some m 

I'tf,,,(b, a)l ~<(1 + I b l ) " ' ( a + a - l )  '' uniformly in n 

Then s has a renormalizat ion in So(R). 
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Proof. Let rESo(R). As we have seen in (2.5), we may write the 
action of s,(.)=c"s(2".) on any function r~S+(R) as absolutely 
convergent integral over the half-plane, 

s,,(r) = Io  __daa I +~' ~r a)~gr(b, a) 

By hypothesis this function is uniformly majorized by an integrable func- 
tion and we may invoke the dominated convergence theorem to write 

~ da I +~ 
s.(r) --* - -  db "#/'*(b, a) ~r a) 

a - o ~  

This shows that s has a local renormalization in S'+(R). I 

7. A S Y M P T O T I C  B E H A V I O R  AT S M A L L  SCALES 

In this section we give asymptotic expansions of the small-scale 
behavior of the wavelet coefficients. In particular we shall give a sufficient 
condition that s satisfies localy the exact scaling condition in Definition 6.1. 
Asymptotic expansions may be useful, because in general the wavelet trans- 
form at a given point depends on the analyzed function as well as on the 
analyzing wavelet, and in general it is difficult to say what is responsible for 
what. However, in the asymptotic limit of small length scales, as we shall 
see, we can clearly distinguish the influence of the analyzed function from 
that of the analyzing wavelet. 

We recall the definition of an asymptotic series expansion of a function 
s. Let r , ,  n = 0, 1 ..... be a family of functions that satisfy 

r,+|(t)=o(r,,(t)) (t-*O) 

For instance, the family r,,(t)=t" will work. Then we say s has an 
asymptotic expansion of order N, in terms of  r,,, if there are coefficients c,  
such that we have 

N 

S(to+t)=S(to)+ ~. c,,r,,(t)+o(ru(t)) (t-*O) 
n =  l 

and we write 

N 

S(to+t)~--S(to)+ ~ c,,r,,(t) (t-*O) 
t l  = [ 
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We write 

S(to + r) "~ S(to) + ~ c,,r.(t) (t --* O) 
n = l  

If N may be chosen arbitrarily large. Note that the infinite series may 
diverge everywhere except for t=O. If a function s has an asymptotic 
expansion (finite or finite), the expansion coefficients c. are uniquely deter- 
mined by s. 

As immediate application of the theorems of the preceding section we 
find that the following theorem holds: 

T h e o r e m  7.1. Let s be a polynomially bounded function. Suppose 
that s has the following infinite asymptotic expansion around to: 

S( to+t ) ' . . S ( to )+  ~ c+. , , I t l~_+c_, , l t l=~ ~ y,,t" 
n = 1 n = 1 

with ~,, r I~ o, and 91~,, monotonic growing in n and not constant as n ~ 
and some arbitrary constants y,,. Then the wavelet transform satisfies the 
following asymptotic expansion: 

~" c_.,,e ) U(~,,. b/a) a ~" #gs(b,  a ) =  (c +.,, + i.~. 

with 

U(~. u) = dt t '~( t  - u) 

Suppose this expansion holds. If s~A~'(~)  for some ~ >0,  it follows 
that s has the above local asymptotic expansion. The wavelet g is supposed 
to be progressive and highly time-frequency localized, g e S+ (R). 

Thus the constants ct,,, c+ .... and c_, , ,  and ft, may be determined from 
the asymptotic behavior of the wavelet transform. The polynomial behavior 
V,,, however, is invisible in wavelet space. 

Let us look at the principal part of the expansion (ct = ct,,) 

~#~S(to + b, a) ~- a=U~(b/a) 

fo U=(u)=(c  + - c _ e  i"=) dt t ~ ( t - u )  

-- iF(~ (c+e-i '~ ' /2--c-ei"=/2)~: 
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It corresponds to the local cusp 

S ( t o + t ) ~ - S ( t o ) + e , , ( t ) + c +  It l ,~+c_ Itl% 

where P is some polynomial. 
First suppose that ct is real-valued. Then if ctC;No or if c teN o but 

c_ -~ ( - 1 ) % +  the constants ct, c _ ,  and c+ can always be recovered from 
the asymptotic form of the wavelet coefficients. Upon a translation we may 
suppose that t o = 0. We then simply choose a line b /a  = c in the half-plane, 
passing through the location of the singularity such that for all ct we have 

I o  d t  t ~ g ( t - c ) ~ O  

We say in this case that the zoom b /a  = c is allowed. For  many wavelets 
every zoom will work; in the general case, however, it sqhould be checked. 
To fix the ideas, we suppose that b/a  = 0 is an allowed zoom. We thus have 
at small scale 

~ g s ( O ,  a )  ~- cei~a ~ (a  --* 0) ,  c >~ 0 

If either c + or c_ is different from 0, then c ~- 0 and we obtain in a double 
logarithmic representation giving log(l~/CrgSl) as a function of log a along 
this line asymptotically a straight line whose slope reveals the exponent cc 

The small-scale behavior of the phase along this line is related to the 
phase of the complex number  c + e + ian/2 - -  C _ e -  i~tn/2 Thus it determines the 
relative size of the constant c+ .  Therefore if gives the qualitative aspects 
of the local singularity; that is, up to rescaling of the singularity. For  
simplicity, let us suppose that ~ is real-valued and positive. Then 

arg(c + e +i~/2 - c e -i=~/2) = (~ - n /2  

The constant c determines the exponent via 

c + e + i=n/2 _ c _ e - ictn/2 ] ~_ e 

In case that the exponent is ct is complex valued the modulus will show 
oscillations, that are related to the imaginary part of cc 
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